
3 Project Plan 
In this next section, we will discuss various aspects of our project plan.

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES 

To maintain our project, our team utilizes an agile style. This methodology ensures we can easily adapt to
the challenges we face at each step of the project process. By splitting our work into shorter sprints, we can
set short-term deadlines that allow us to better seek feedback and potentially pivot without losing
substantial progress.

In order to decompose our tasks and assign them to group members, our team keeps track of progress by
utilizing the issue board on our Gitlab repository. To facilitate communication and ensure all team members
are making progress and not running into roadblocks, we utilize Discord for regular communication.
Through this medium, we are able to discuss the division of topics, schedule meetings, track important
information, and keep well-documented meeting minutes.

3.2 TASK DECOMPOSITION 

To delineate and break down the tasks that need to be accomplished to complete the final software
deliverable, we broke the project into discrete conceptual tasks. These tasks cover the main sets of
functionality that we need to implement. The tasks are broken down into four groups represented by
different colors. Yellow represents database and data parsing tasks, red represents documentation, blue
represents UI development, and orange represents our SQL querying system. All of this can be seen below
in the diagram.



The tasks from the task decomposition are the following:

1. Database and Data Parsing (Yellow)

● Formulate Database Structure
○ Create a schema that easily matches the raw data into the tabular format.

● Create and test Data Collation and Cleaning system
○ Ensure that all processes relating to data loading work as expected.

● Develop CSV Parsing and Data normalization System
○ Create subject scripts to parse data from CSV files

● Integrate Database At Rest Saving System
○ Implement mechanisms to ensure the data integrity when not being accessed.

● Fully Implement and Integrate Database
○ Integrate the database into the larger system, ensuring that data is properly handled.

2. Documentation (Red)

● Create Project Documentation
● Create User Documentation

○ Ensure the user knows the features of and how to use the program

3. User Interface (Blue)

● UI research
○ Research potential libraries/frameworks we want to utilize for developing our project. We

can ensure consistent design and easier development by establishing our desired tech
stack.

● Develop UI Sketch in Figma for all UI pages
○ Create Figma mockups of what we want our screens to look like. By creating mockups, we

can work towards a goal and establish what we want our design to look like prior to
implementation, resulting in less wasted time.

● Develop UI without full logic
○ By creating a basic UI without all of the logic, we can determine any visual changes that

need to be made. We will also have a better understanding of how the Figma mockups
translate to reality.

● Develop and Finalize Full UI Implementation
○ Implement natural language processing API, all logic, and database connection. At this

point, the website should be fully functional.

4. SQL Querying System (Orange)

● Develop AI-Powered Natural Language Query Formatting System for our Database and Schema
○ Build a system that converts user-generated natural language queries into structured

queries for the implemented database.
● Develop and Integrate the Query Saving System

○ Implement a system to store, save, and retrieve custom queries for easy access and reuse.
● Develop and Integrate the Structure-based Query Formatting System

○ Ensure that queries are checked for correctness syntactically.
● Finalize and Integrate the Whole Querying System



○ Combine the natural language, saved query, and structure-based query system into one
system.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

Milestones:

1. Set up the development environment for all members
2. Create Figma mockups for front-end and consult with the client
3. Create UI components in React

a. Query Page
b. Query History Page
c. Data Upload Page
d. Settings Page

4. Create database schema
5. Set up CI/CD for the project
6. Implement data parsing solution
7. Implement the back-end server for data hosting
8. Implement API for NLP
9. Attempt to query data

3.4 PROJECT TIMELINE/SCHEDULE 

Our development cycle will be broken down into multiple sprints with events in chronological order from
the top down.

● Sprint 1: October through December.
○ Project Planning
○ Product Research
○ Documentation



○ UI Creation in Figma and with REACT
○ Begin creation of NLP implementation methods
○ Test UI’s ability to handle NLP

● Sprint 2: January
○ Finalize design of database structure
○ Finalize design and list of required database tools
○ Begin creation of database structure
○ Begin creation of database tools
○ Test backend communication with the database

● Sprint 3: February
○ Continue creation of database structure
○ Continue creation of database tools
○ Continue creation of NLP implementation methods
○ Begin mapping frontend buttons to backend tools
○ Test and implement currently created tools using frontend UI

● Sprint 4: March
○ Finalize database structure
○ Finalize database tools
○ Finalize NLP implementation
○ Finalize mapping frontend buttons to backend tools
○ Begin optimization of database tools
○ Begin optimization of NLP responses

● Sprint 5: April
○ Finalize optimization of database tools
○ Finalize optimization of NLP responses
○ Finalize documentation for the final deliverable

3.5 RISKS AND RISK MANAGEMENT/MITIGATION 

Risks Risk
Probability

Mitigation

Missing the desired deadline 0.2 Our team has established a solid communication
channel and regularly meets to determine the progress
of our project. If a team member is struggling, our
group will work together to ensure the deadline is
met.

Software issues 0.3 We are using frameworks and libraries that are already
on the market. If we encounter a limitation, we need
to prepare to switch technologies.

Database taking too long to
query

0.4 When dealing with large datasets, there is some
uncertainty regarding queries as it could take longer
than expected to process. One mitigation strategy
would be to provide an index of certain columns.
Another potential mitigation strategy would be to
partition the database (theoretically). When it comes
to hardware-specific limitations, mitigations go
beyond the scope of this project.



Natural language processing is
not working correctly

0.4 ChatGPT works well for SQL queries based on a
simple schema. However, with multiple terabytes of
data and parameters that are not as easy to
understand, we might encounter scenarios where
generated queries contain invalid syntax. We must
thoroughly test queries generated by the AI model to
ensure our expected results make sense and attempt
to interact with and guid chatGPT towards improving
the syntax.

3.6 PERSONNEL EFFORT REQUIREMENTS 

Task Projected Effort

Develop a user interface 60 hours

Determine the required tables for the database 5 hours

Develop a tool to transfer data to the database 20 hours

Handle natural language processing via OpenAI 30 hours

Handle communication between the frontend application, the backend
application, and the database

20 hours

Develop software to analyze queries and determine compliance with the
schema and accuracy of the original request

15 hours

3.7 OTHER RESOURCE REQUIREMENTS 

We will need a local server with large amounts of storage to host our testing database and run our backend
application. In addition, this requires a continuous connection between itself and the device running the
frontend application. Beyond this, we require OpenAI API input tokens to ensure we correctly retrieve
queries given natural language. As a largely software-based project, most of our resources depend on
developers owning personal computers. In sum, We do not expect the development efforts throughout the
project to cause any unforeseen financial strain.


